Меню

Делать что то через силу тока

Удар током: первая помощь, последствия после поражения электрическим током

Под электротравмой понимают повреждение органов и систем вследствие поражения электрическим током. Основные причины смерти при ударе током — это остановка дыхания и остановка сердца. После сильного удара током, если человек выживет, возможно развитие осложнений со стороны сердечно-сосудистой, центральной нервной системы, нарушение зрения, слуха и пр.

Чаще всего несчастные случаи происходят при:

  • незнании или несоблюдении правил техники безопасности при пользовании электроприборами
  • неисправные бытовые приборы в быту, электрооборудование на предприятиях
  • оборвавшиеся провода высоковольтных линий

Степень поражения организма человека зависит от способа прохождения тока по телу, от силы и напряжения тока, времени воздействия, состояния здоровья, возраста, а также своевременности оказания пострадавшему первой помощи.

Виды поражения электричеством

  • электрический удар (шок) — воздействие на весь организм, он не вызывает ожогов, а приводит к параличу дыхания и/или сердца
  • электрическая травма — поражение внешних частей тела: электрические знаки, ожоги, металлизация кожи.

Воздействие электротоков на организм

  • Тепловое — вследствие сопротивления тканей организма электрическая энергия переходит в тепловую, вызывая электрические ожоги в характерных местах входа и выхода тока, которые называют знаки тока. При прохождении через ткани тепловая энергия изменяет и разрушает их.
  • Электрохимическое — приводит к сгущению и склеиванию клеток крови, перемещению ионов и изменению заряда белковых молекул, образованию паров и газов. Пораженные ткани приобретают ячеистый вид.
  • Биологическое — нарушается работа скелетной мускулатуры сердца, нервной и других систем.

Симптомы поражения электрическим током

  • Неожиданное падение человека на улице или неестественное отбрасывание от источника тока невидимой силой
  • Потеря сознания, судороги
  • Выраженные сокращения мышц непроизвольного характера
  • Выпадениt неврологических функций — потеря памяти, нарушение понимания речи и зрения, нарушение ориентации в пространстве, изменение кожной чувствительности, реакции зрачка на свет.
  • Фибрилляция желудочков и остановка дыхания — неровный пульс и неровное дыхание
  • Ожоги на теле с резко очерченными границами/

Знаки тока на коже

Это участки омертвления наружных тканей в точках входа и выхода электротока вследствие перехода энергии из электрической в тепловую. Электроожоги редко ограничиваются лишь метками на коже, чаще повреждаются более глубокие ткани: мышцы, сухожилия, кости. Встречаются варианты, когда поражение локализовано под внешне неповрежденной кожей.

Последствия удара током

Нервная система

  • потеря сознания различной степени и продолжительности;
  • потеря памяти (ретроградная амнезия);
  • судороги;
  • слабость и разбитость;
  • головокружения и головная боль;
  • нарушение терморегуляции;
  • мелькание в глазах, нарушение зрения.

При поражении нервов изменяется чувствительность и двигательная активность в конечностях, нарушается трофика, возникают патологические рефлексы. Прохождение тока через мозг приводит к судорогам и потере сознания, в ряде случаев поражение дыхательного центра ведет к остановке дыхания.

Ток высокого напряжения приводит к глубоким нарушениям деятельности ЦНС, торможению центра дыхания и регуляции сердечной деятельности, что приводит к электрической летаргии, мнимой смерти, когда кажется, что дыхание и сердцебиение отсутствуют, а на самом деле деятельность жизненно важных систем снижена до минимума. Вовремя начатые реанимационные мероприятия приводит к успешному восстановлению работы систем.

Сердечно-сосудистая система

В большинстве случаев наблюдаются сбои сердечной деятельности функционального характера:

  • синусовая аритмия;
  • тахикардия;
  • брадикардия;
  • экстрасистолия;
  • сердечные блокады.

Поражение током сердечной мышцы может привести к нарушению сократительной функции, приводя к фибрилляции, когда волокна миокарда начинают сокращаться в разрозненном ритме, а сердце не может перекачивать кровь, что по тяжести равносильно остановке сердца. Повреждение сосудов приводит к кровотечениям.

Дыхательная система

Торможение или остановка дыхательной деятельности происходят вследствие поражения дыхательного центра в головном мозге. Прохождение тока через легочную ткань приводит к ушибу и разрыву легких.

Органы чувств

  • падение слуха;
  • шум в ушах;
  • расстройство осязания;
  • разрыв барабанной перепонки;
  • травма среднего уха;
  • кератит;
  • хориоидит;
  • катаракта.

Поперечнополосатая и гладкая мускулатура

  • Спазм и сокращение мышечных волокон может привести к судорогам.
  • Сильное сокращение скелетных мышц может закончиться переломами позвоночника и трубчатых костей.
  • Спазм мышечного слоя сосудистой стенки приводит к повышению давления или инфаркту миокарда (в случае спазма сердечных артерий).

Отдаленные осложнения

  • ССС : нарушение проводимости сердца, сердечного ритма, облитерирующий эндартериит, артериосклероз;
  • Нервная система : невриты, энцефалопатии, трофические язвы, вегетативные изменения;
  • Органы чувств: катаракта, нарушение слуха и зрения;
  • Костно-мышечная система : контрактуры (ограничение амплитуды движений, невозможность согнуть конечность), деформации.

Факторы, влияющие на характер и тяжесть электротравмы

Вид и сила и напряжение тока

  • Более чем 1000-вольтное напряжение тока приводит к тяжелым повреждениям вплоть до смерти, причем даже не прикасаясь к источнику, а находясь очень близко — в шаговом нахождении от источника тока (так называемая «вольтова дуга»).
  • Переменный ток опаснее постоянного
  • Низкочастотный ток поражает внутренние органы
  • Высокочастотный – поверхность кожи, не приводя к смерти.
Сила тока (мА) Реакция организма при воздействии на руку
0,9-1,2 Еле ощутимое воздействие
1,2-1,6 Мурашки и щекотание по коже
1,6-2,8 Напряжение в запястье
2,8-4,5 Ухудшение подвижности в предплечье
4,5-5,0 Судороги мышц предплечья
5,0-7,0 Судороги мышц плеча
15,0-2015,0-20 Рука не отрывается от источника тока
20-40 Болезненные судороги мышц всего тела
50-100 Остановка сердечной деятельности
Более 200 Глубокие ожоги

Путь тока по организму – петля тока

Травмирование током в быту

  • Самые опасные варианты – полная петля, включающая 2 руки и 2 ноги, рука-рука, поскольку ток протекает через сердце.
  • Не менее опасный — рука-голова, когда ток проходит через головной мозг.

Сопротивление тканей и плотность тока

Под плотностью тока понимают количество тока, проходящего через единицу площади. Энергия концентрируется при прохождении тока через меньшую площадь. Например, если электроток проходит через руку, плотность тока увеличивается в зоне суставов.

Продолжительность действия тока

Чем дольше действует ток, тем сильнее поражения и больше вероятность смерти.

  • Ток высокого напряжения проводит к резкому сокращению мышц, человек даже может быть с силой отброшен от источника тока.
  • Ток низкого напряжения провоцирует спазм мышц приводит к продолжительному непроизвольному захвату проводника руками. С течением времени уменьшается сопротивление кожи, поэтому необходимо как можно раньше прервать контакт пострадавшего с проводником.

Внешние факторы

Тяжесть поражения возрастает в условиях повышенной влажности (бани, ванные), а также при поражении током в воде, причем в соленой воде поражение сильнее, чем в пресной (чем больше растворенных солей в воде, тем лучше электропроводность воды).

Состояние организма

Опасность поражения током усиливается на фоне истощения, алкогольного или наркотического опьянения, хронических заболеваний, старческого и детского возраста.

Почему часты случаи смерти в ванне при контакте с бытовыми приборами?

Роковую роль играет влажная и мокрая кожа. Такая кожа имеет меньшее сопротивление к электрической энергии и, соответственно, поражающее действие всегда сильнее даже при действии приборов с казалось бы невысоким напряжением в 110 В, например, от фена или радио. К тому же, мокрое тело практически гарантирует формирование наиболее опасной петли тока через жизненно важные органы.

Степени поражения током — классификация

По Френкелю

По Полищук и Фисталь

Алгоритм оказания первой помощи при ударе током

Все действия должны осуществляться очень быстро, без задержек, лишних разговоров и рассуждений. Своевременное оказание помощи позволяет сохранить жизнь и уменьшить тяжесть электротравмы.

Каково бы не было состояние пострадавшего, следует незамедлительно вызвать скорую или доставить человека в медицинское учреждение. Смерть от удара током может наступить и через несколько часов. Внешняя картина не отражает внутренних повреждений после удара электрическим током.

Как можно быстрее прекратить контакт пострадавшего с проводником тока

Оценить состояние дыхательной и сердечно-сосудистой систем и в сознании ли человек

Легонько похлопать по щеке, задать элементарные вопросы. При необходимости провести реанимационные мероприятия:

  • проверить наличие дыхания : посмотреть, есть ли дыхательные движения грудной клетки, поднести ко рту и носу зеркальце/стекло, которое будет запотевать при наличии дыхания, или тонкую нить, которая должна отклоняться при дыхании;
  • определить пульс на сонной артерии путем прижатия области ее проекции пальцами;
  • освободить проходимость дыхательных путей для дальнейшего спасения: ладонь одной руки положить на лоб пострадавшему, приподнять подбородок двумя пальцами другой руки, выдвинуть вперед нижнюю челюсть и запрокинуть голову назад. При подозрении на перелом позвоночника данные действия запрещены, при западании языка допустимо его фиксация к щеке булавкой.

Первичная реанимация пострадавшего (при отсутствии пульса и дыхания)

  • Непрямой массаж сердца — наиболее эффективен в течение 3 первых минут после остановки сердца. Пациент лежит на спине на ровной поверхности, выпрямленные в локтях руки спасающего располагаются посередине грудной клетки между сосками. Производят по 100 ритмичных нажатий в течение 1 минуты на грудную клетку с амплитудой нажатий 5-6 см и до полного расправления грудной клетки после нажатия.
  • Дыхание рот в рот — по два полных выдоха через каждых 30 нажатий на проекцию сердца. При невозможности данного способа допустимо использовать только непрямой массаж сердца.
  • Продолжительность реанимационных мероприятий – до приезда скорой или до появления признаков жизни (порозовение кожи, появление пульса и дыхания). Пострадавшего в таком случае поворачивают на бок и ожидают скорую. Максимальная продолжительность – 30 минут, дальнейшие действия нецелесообразны за исключением тех пациентов, которые находятся в условиях холодных температур.
  • Медикаментозное лечение (проводится реанимационной бригадой скорой). При безуспешности приведенных выше мероприятий в течение 2-3 минут вводится 1 мл адреналина 0,1% (внутримышечно, внутривенно или внутрисердечно); а также кальций хлорид 10% — 10 мл, строфантина 0,05% — 1мл, разведенный в 20 мл 40% растворе глюкозы.
  • Первичная обработка ожогов заключается в наложении сухой марлевой повязки.
  • Обезболивающие — при сохранении сознания до приезда скорой человеку можно дать обезболивающее и успокаивающее.
  • Транспортировка пострадавшего в стационар осуществляется в лежачем положении и укрытом теплым одеялом.
Читайте также:  Алгоритм оказания первой помощи при поражении электрическим током ожогах отморожении

Стационарное лечение после удара током

  • Осуществляется в реанимации, а при отсутствии признаков ожогового или электрического шока – в хирургическом отделении.
  • Комплекс лечения зависит от показаний: от простого туалета и перевязки ожоговых ран до сложных хирургических вмешательств по восстановлению поврежденных органов и тканей.
  • Даже при отсутствии местных повреждении и удовлетворительном состоянии пациент находится в отделении под наблюдением для профилактики отдаленных реакций со стороны систем и органов.
  • Серьезные электротравмы требуют длительной реабилитации.

Особенности поражения молнией

Поражающие факторы: электрический ток, звуковая и световая энергия, ударная волна. Воздействие молнии подобно поражению электрическим током высокого напряжения.

  • Характерны симметричные повреждения: парезы двух конечностей, параплегии.
  • Знаки тока имеют причудливую извитую форму и отличаются большой продолжительностью.

Если гроза застала на улице, нельзя прятаться под деревьями, прислоняться к металлическим предметам и тем более находиться в воде.

Источник

Сила тока

Сила тока с точки зрения гидравлики

Думаю, вы не раз слышали такое словосочетание, как “сила тока“. А для чего нужна сила? Ну как для чего? Чтобы совершать полезную или бесполезную работу. Главное, чтобы что-то делать. Каждый из нас обладает какой-либо силой. У кого-то сила такая, что он может одним ударом разбить кирпич в пух и в прах, а другой не сможет поднять даже соломинку. Так вот, дорогие мои читатели, электрический ток тоже обладает силой.

Представьте себе шланг, с помощью которого вы поливаете свой огород

дети поливают огород

Давайте теперь проведем аналогию. Пусть шланг – это провод, а вода в нем – электрический ток. Мы чуть-чуть приоткрыли краник и вода сразу же побежала по шлангу. Медленно, но все-таки побежала. Сила струи очень слабая.

А давайте теперь откроем краник на полную катушку. В результате струя хлынет с такой силой, что можно даже полить соседский огород.

В обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете ведро. Напором воды из какого шланга вы его быстрее наполните? Разумеется из зеленого, где напор воды очень сильный. Но почему так происходит? Все дело в том, что объем воды за равный промежуток времени из желтого и зеленого шланга выйдет тоже разный. Или иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Разберем еще один интересный пример. Давайте допустим, что у нас есть большая труба, и к ней заварены две другие, но одна в два раза меньше диаметром, чем другая.

Из какой трубы объем воды будет выходить больше за секунду времени? Разумеется с той, которая толще в диаметре, потому что площадь поперечного сечения S2 большой трубы больше, чем площадь поперечного сечения S1 малой трубы. Следовательно, сила потока через большую трубу будет больше, чем через малую, так как объем воды, который протекает через поперечное сечение трубы S2, будет в два раза больше, чем через тонкую трубу.

Что такое сила тока?

Итак, теперь давайте все что мы тут пописали про водичку применим к электронике. Провод – это шланг. Тонкий провод – это тонкий в диаметре шланг, толстый провод – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый провод при одинаковом напряжении можно протащить больше электронов, чем тонкий. И вот здесь мы подходим вплотную к самой терминологии силы тока.

Все это выглядит примерно вот так. Здесь я нарисовал круглый проводок, “разрезал” его и получил ту самую площадь поперечного сечения. Именно через нее и бегут электроны.

За период времени берут 1 секунду.

Формула силы тока

Формула для чайников будет выглядеть вот так:

I – собственно сила тока, Амперы

N – количество электронов

t – период времени, за которое эти электроны пробегут через поперечное сечение проводника, секунды

Более правильная (официальная) формула выглядит вот так:

сила тока формула

Δq – это заряд за какой-то определенный промежуток времени, Кулон

Δt – тот самый промежуток времени, секунды

I – сила тока, Амперы

В чем прикол этих двух формул? Дело все в том, что электрон обладает зарядом приблизительно 1,6 · 10 -19 Кулон. Поэтому, чтобы сила тока была в проводе (проводнике) была 1 Ампер, нам надо, чтобы через поперечное сечение прошел заряд в 1 Кулон = 6,24151⋅10 18 электронов. 1 Кулон = 1 Ампер · 1 секунду.

Итак, теперь можно официально сказать, что если через поперечное сечение проводника за 1 секунду пролетят 6,24151⋅10 18 электронов, то сила тока в таком проводнике будет равна 1 Ампер! Все! Ничего не надо больше придумывать! Так и скажите своему преподавателю по физике).

Если преподу не понравится ваш ответ, то скажите типа что-то этого:

Сила тока – это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам, Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.

Сила тока и сопротивление

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову – это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу – это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения?

Первое, что приходит на ум – это увеличить давление. В этом случае скорость потока воды увеличится, но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика.

Второе – это поставить шланг бОльшим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводу. Чем он больше в диаметре, тем больше он сможет “протащить” через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его “порвет”, то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит от того, на какую силу тока он рассчитан.

Как только сила тока через тонкий проводок предохранителя превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в предохранителе в обрыве.

сгоревший плавкий предохранитель

Поэтому, силовые кабели, через которые “бегут” сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.

Сила тока в проводнике

Очень часто можно увидеть задачки по физике с вопросом: какая сила тока в проводнике? Проводник, он же провод, может иметь различные параметры: диаметр, он же площадь поперечного сечения; материал, из которого сделан провод; длина, которая играет также важную роль.

Читайте также:  Драйвер тока для прожекторов

Да и вообще, сопротивление проводника рассчитывается по формуле:

сопротивление проводника

формула сопротивления проводника

Таблица с удельным сопротивлением из разных материалов выглядит вот так.

удельное сопротивление материалов

таблица с удельным сопротивлением веществ

Для того, чтобы найти силу тока в проводнике, мы должны воспользоваться законом Ома для участка цепи. Выглядит он вот так:

формула закона Омазакон Ома

Задача

У нас есть медный провод длиной в 1 метр и его площадь поперечного сечения составляет 1 мм 2 . Какая сила тока будет течь в этом проводнике (проводе), если на его концы подать напряжение в 1 Вольт?

сила тока в проводнике

задача на силу тока в проводнике

решение задачи сила тока в проводнике

Как измерить силу тока?

Для того, чтобы измерить значение силы тока, мы должны использовать специальные приборы – амперметры. В настоящее время силу тока можно измерить с помощью цифрового мультиметра, который может измерять и силу тока, и напряжение и сопротивление и еще много чего. Для того, чтобы измерить силу тока, мы должны вставить наш прибор в разрыв цепи вот таким образом.

как измерить силу тока

Более подробно как это сделать, можете прочитать в этой статье.

Также советую посмотреть обучающее видео, где очень умный преподаватель объясняет простым языком, что такое “сила тока”.

Источник

Сила тока: определение, как найти, расчет в проводнике

  • Природа происхождения
  • Модель электрической цепи
  • Единица измерения
    • В чем измеряется
    • В честь кого названа единица измерения
  • Как найти силу тока
    • В проводнике
    • В цепи
    • Формулы
  • Как можно измерить силу тока
    • Описание прибора
  • Примеры нахождения силы тока в задачах

Сила тока — физическая величина, которая позволяет дать количественную характеристику току. Она обозначается буквой I и численно равна заряду, который за единицу времени протекает через поперечное сечение проводника.

Природа происхождения

Электрический ток — это направленное движение заряженных частиц под воздействием электрического поля.

В качестве частиц выступают:

  • в металлических проводниках — электроны;
  • в полупроводниках — дырки или электроны;
  • в вакууме — электроны (при определенных условиях);
  • в газах — электроны и ионы;
  • в растворах и расплавах электролитов — ионы.

Пока по проводнику не течет электрический ток частицы движутся хаотично. И их количество перетекших в одном направлении примерно соответствует и количеству частиц, перетекших в противоположном направлении.

Но ситуация меняется после того, как по проводнику пускают ток. В этом случае количество движущихся в одном направлении частиц значительно возрастает. И чем больше их проходит через поперечное сечение проводника за единицу времени, тем больше и сила тока.

Модель электрической цепи

Лучше понять физический смысл рассматриваемой величины можно на примере механической модели электрической цепи. В качестве ее возьмем водопроводную сеть частного дома.

Для того, чтобы вода начала поступать в водопровод из скважины или колодца необходим насос. Поэтому его можно рассматривать в качестве аналога батареи или иного источника тока. Он создает в системе давление, которое и приводит воду в движение. Соответственно трубы выступают роли проводников, молекулы воды — электронов, а краны — электрических переключателей.

Чем сильнее напор в водопроводной системе, тем большее количество воды, а вернее ее молекул, протекает через поперечное сечение трубы за каждую секунду. Отсюда можно сделать вывод, что чем больше сила тока, тем сильнее и его действие.

Воздействие тока силой до 0,5 мА (частота 50 Гц) человек не ощущает. При силе от 2 до 10 мА возникают болезненные сокращения мышц. А удар током силой свыше 100 мА грозит развитием фибрилляции желудочков и остановкой сердечной деятельности.

Единица измерения

Так как сила тока — это количественная величина, то в физике есть и единица ее измерения. Она позволяет проводить сравнительный анализ различных токов и их действий.

В чем измеряется

Формула силы тока записывается так:

где \(\triangle t\) — это единица времени, а \(\triangle q\) — количества электрического заряда, протекшего за указанный промежуток времени через поперечное сечение проводника.

В Интернациональной системе (СИ) заряд измеряется в Кулонах, а время — в секундах. В соответствии с этим единица измерения силы тока — Кулон/секунду. По международному соглашению ее стали называть Ампером.

В 1948 году было предложено определять силу тока по взаимодействию двух проводников, расположенных в вакууме на расстоянии одного метра друг от друга и длиной в один метр.

За силу тока в 1 A принимают такой ток, при котором два проводника притягиваются друг к другу (ток течет в одном направлении) или отталкиваются (ток течет в разных направлениях) с силой 0,0000002 H.

На практике очень часто применяются кратные единицы силы тока:

1 кА = 103 А, 1 мкА = 10-6 А, 1 мА = 10-3 А

В честь кого названа единица измерения

Единица измерения силы тока была названа в честь французского ученого Андрэ-Мари Ампер. Его называют «отцом» учения о электромагнетизме. Именно он ввел в науку такие термины как электрический ток, электростатика и электродинамика, гальванометр, напряжение, электродвижущая сила, соленоид. Амперу удалось найти доказательство теоремы «О циркуляции магнитного поля» и описать математически силу взаимодействия между токами.

Как найти силу тока

С проблемой определения силы тока сталкиваются и при решении задач, и в повседневной жизни. Вычислить этот параметр для проводника или электрической цепи можно не только путем проведения измерений, но и при помощи формул.

В проводнике

Основными величинами, характеризующими электрический ток, являются сила, напряжение и сопротивление. Взаимосвязь между ними была установлена экспериментальным путем в 1826 году Георгом Омом. В последствии она была сформулирована в виде закона, который и был назван в честь ученого.

Закон Ома: сила тока в участке цепи или проводнике обратно пропорциональна сопротивлению и прямо пропорциональна напряжению.

Рассчитать силу тока в проводнике также можно, если разделить мощность на напряжение.

При протекании тока происходит нагревание проводника. И по количеству выделившегося тепла на основании закона Джоуля-Ленца возможно провести вычисление силы тока.

В цепи

Реальный источник тока всегда обладает своим внутренним сопротивлением.

Закон Ома для полной цепи формулируется так: сила тока в полной цепи прямо пропорциональна электродвижущей силе источника тока и обратно пропорциональна сумме внутреннего и внешнего сопротивления.

Формулы

Закон Ома для участка цепи:

где R — сопротивление проводника, а U — напряжение.

Закон Ома для полной цепи:

где ε — электродвижущая сила источника тока, R + r — сумма сопротивлений источника и внешней нагрузки.

Формула, для определения силы тока по мощности и напряжению:

где P — мощность, а U — напряжение.

Закон Джоуля-Ленца: при протекании по проводнику тока происходит выделение тепла (Q), которое равно произведению квадрата силы тока (I) на время (t), которое он протекал и на сопротивление проводника (R).

Математически формула выглядит так:

Исходя из нее можно вывести еще одну формулу для расчета силы тока:

Как можно измерить силу тока

Для измерения силы тока используется прибор, называемый амперметром. На электрических схемах он обозначается буквой А, заключенной в окружность.

Цепь

В любом проводнике замкнутой цепи, собранной последовательно, протекает электрический ток одинаковой величины. Поэтому для его измерения достаточно просто разомкнуть эту цепь в любом месте и подключить амперметр. Нельзя подключать его к источнику тока при отсутствии устройства потребления.

Ток бывает переменный и постоянный. И для его измерения необходимы разные устройства. На шкале амперметров для постоянного тока имеется одно из следующих обозначений — «-», «DC» или указание на полярность подключения. Амперметры, предназначенные для измерения силы переменного тока обозначаются « \(\sim\) » или «АС».

Амперметр для постоянного тока необходимо включать в цепь с соблюдением полярности, то есть к клемме прибора, имеющей обозначение «+», присоединяют провод, идущий от положительного электрода.

Если на источнике тока отсутствует указание полярности, то узнать ее можно по электрической схеме. Короткая линия всегда соответствует «минусу», а длинная — «плюсу».

Амперметр для переменного тока не имеет полярности и подключается без ее учета.

Описание прибора

Амперметр — это один из электроизмерительных приборов. Он обладает очень низким сопротивлением, чтобы не оказывать влияния на величину измеряемой силы тока. Ведь закон Ома гласит, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Это означает, что чем больше сопротивление проводников, тем меньше сила тока.

Читайте также:  Почему машина бьет токам

Шкала прибора может быть градуирована не только в А, но и в других кратных единицах — мкА, мА, кА.

  • аналоговые (стрелочные);
  • цифровые (электронные).

Измерители стрелочного типа не нуждаются в источнике питания, так как потребляют электрический ток непосредственно из измеряемой цепи. Но они показывают величину силы тока с некоторой задержкой, а не мгновенно.

Электронные амперметры практически полностью лишены такого недостатка как инерционность. Современные процессоры, используемые в этих моделях, обеспечивают частоту обновления показателей до 1000 в минуту. Их недостатком является высокая цена и необходимость отдельного источника питания для функционирования.

Примеры нахождения силы тока в задачах

Задача №1

Определите силу тока проводнике, имеющем сопротивление 55 Ом при напряжении в сети 220В.

Решение

Вычисление

Ответ: сила тока в проводнике 4,4 А.

Задача №2

Сила тока в резисторе при напряжении 100В (U1) составляет 4 А (I1). Если напряжение увеличить на 20В (Δ U), как изменится сила тока (I2), протекающего через этот резистор?

Решение

По условию задачи сопротивление резистора не изменяется. Тогда:

Вычисление

Ответ: сила тока станет 4,8 А.

Задача №3

Определите силу тока в цепи с внешним сопротивлением 10 Ом и источником постоянного тока, ЭДС которого составляет 15В, а внутреннее сопротивление – 1 Ом.

Решение

Вычисление

Задача №4

При какой силе тока (I) проволока с сопротивлением (R) 20 Ом за 300 секунд (t) выделит 6 кДж теплоты (Q)?

Источник



Сила тока

О чем эта статья:

Электрический ток

По проводам течет электрический ток. Причем он именно «течет», практически как вода. Представим, что вы — счастливый фермер, который решил полить свой огород из шланга. Вы чуть-чуть приоткрыли кран, и вода сразу же побежала по шлангу. Медленно, но все-таки побежала.

Сила струи очень слабая. Потом вы решили, что напор нужен побольше и открыли кран на полную катушку. В результате струя хлынет с такой силой, что ни один помидор не останется без внимания, хотя в обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете два ведра из двух шлангов. У одного из них напор сильнее, у другого слабее. Быстрее наполнится то ведро, в которое льется вода из шланга с сильным напором. Все дело в том, что объем воды за равный промежуток времени из двух разных шлангов тоже разный. Иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Если мы возьмем проводник с током, то будет происходить то же самое: заряженные частицы будут двигаться по проводнику, как и молекулы воды. Если больше заряженных частиц будет двигаться по проводнику, то «напор» тоже увеличится.

  • Электрический ток — это направленное движение заряженных частиц.

В Skysmart ученики погружаются в мир физических законов без стресса и с удовольствием. Обучение проходит в интерактивном формате, с захватывающими примерами из жизни, интересной домашкой и личным трекером прогресса. Все это помогает подружиться с физикой, подтянуть оценки и сдать экзамены.

Приходите на бесплатное вводное занятие — покажем, как проходит обучение и вдохновим на учебу!

Сила тока

Сразу возникает потребность в величине, которой мы будем «напор» электрического тока измерять. Такая, чтобы она зависела от количества частиц, которые протекают по проводнику.

Сила тока — это физическая величина, которая показывает, какой заряд прошел через проводник.

Сила тока

I = q/t

Сила тока измеряется в Амперах. Единица измерения выбрана не просто так.

Во-первых, она названа в честь физика Андре-Мари Ампера, который занимался изучением электрических явлений. А во-вторых, единица этой величины выбрана на основе явления взаимодействия двух проводников.

Андре-Мари Ампер

Здесь аналогии с водопроводом провести, увы, не получится. Шланги с водой не притягиваются и не отталкиваются вблизи друг друга (а жаль, было бы забавно).

Когда ток проходит по двум параллельным проводникам в одном направлении, проводники притягиваются. А когда в противоположном направлении (по этим же проводникам) — отталкиваются.

два параллельных проводника

За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника длиной 1 м, расположенные на расстоянии 1 м друг от друга в вакууме, взаимодействуют с силой 0,0000002 Н.

Задача

Найти силу тока в цепи, если за 2 секунды в ней проходит заряд, равный 300 мКл.

Решение:

Возьмем формулу силы тока

I = 300 мКл / 2 с = 150 мА

Ответ: сила тока в цепи равна 150 мА

Проводники и диэлектрики

Некоторые делят мир на черное и белое, а мы — на проводники и диэлектрики.

Медь, железо, алюминий, олово, свинец, золото, серебро, хром, никель, вольфрам

Воздух, дистиллированная вода, поливинилхлорид, янтарь, стекло, резина, полиэтилен, полипропилен, полиамид, сухое дерево, каучук

То, что диэлектрик не проводит электрический ток, не значит, что он не может накапливать заряд. Накопление заряда не зависит от возможности его передавать.

Направление тока

Раньше в учебниках по физике писали так: когда-то давно решили, что ток направлен от плюса к минуса, а потом узнали, что по проводам текут электроны. Но электроны эти — отрицательные, а значит к минусу идти не могут. Но раз уже условились о направлении, поэтому оставим, как есть. Вопрос тогда возникал у всех: почему нельзя поменять направление тока? Но ответ так никто и не получил.

Сейчас пишут немного иначе: положительные частицы текут по проводнику от плюса к минусу, туда и направлен ток. Здесь вопросов ни у кого не возникает.

Так и какая версия верна?

На самом деле, обе. Носители заряда в каждом типе материала разные. В металлах — это электроны, в электролитах — ионы. У каждого типа частиц свои знаки и потребность в том, чтобы бежать к противоположно заряженному полюса источника тока.

Не будем же мы для каждого типа материала выбирать направление тока, чтобы решить задачу! Поэтому принято направлять ток от плюса к минусу. В большинстве задач школьного курса направление тока роли не играет, но есть то самое коварное меньшинство, где этот момент будет очень важным. Поэтому запомните — направляем ток от плюса к минусу.

Источник тока

Вода в шланге берется из водопровода, ключа с водой в земле — в общем, не из ниоткуда. Электрический ток тоже имеет свой источник.

В качестве источника может выступить, например, гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения. По сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».

Амперметр

Мы знаем, куда ток направлен, в чем измеряется сила тока, как ее вычислить, зная заряд и время, за которое этот заряд прошел. Осталось только измерить.

Прибор для измерения силы тока называется амперметр. Его включают в электрическую цепь последовательно с тем проводником, в котором ток измеряют.

что такое амперметр

Амперметры бывают очень разными по принципу действия: электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные — и это только самые распространенные.

Мы рассмотрим только принцип действия теплового амперметра, потому что для понимания принципа действия других устройств необходимо знать, что такое магнитное поле и катушки.

Тепловой амперметр основан на свойстве тока нагревать провода. Устроен так: к двум неподвижным зажимам присоединена тонкая проволока. Эта тонкая проволока оттянута вниз шелковой нитью, связанной с пружиной. По пути эта нить петлей охватывает неподвижную ось, на которой закреплена стрелка. Измеряемый ток подводится к неподвижным зажимам и проходит через проволоку (на рисунке стрелками показан путь тока).

Под действием тока проволока немного нагреется, из-за чего удлинится, вследствие этого шелковая нить, прикрепленная к проволоке, оттянется пружиной. Движение нити повернет ось, а значит и стрелку. Стрелка покажет величину измерения.

тепловой амперметр

Разобраться во всех видах амперметров и не только в них помогут внимательные учителя детской школы Skysmart. Приходите на бесплатный вводный урок и начните заниматься в удовольствие уже завтра!

Источник