Меню

Чем является ток в плазме

Чем является ток в плазме

В газовом разряде возникает большое количество положительных ионов вследствие высокой эффективности ударной ионизации, причем концентрация ионов и электронов одинакова. Такая система из электронов и положительных ионов, распределенных с одинаковой концентрацией, называется плазмой. Термин «плазма» был введен в 1929 г. американскими физиками И. Ленгмюром и Л. Тонксом.

Плазма, возникающая в газовом разряде, носит название газоразрядной; к ней относятся положительный столб тлеющего разряда, канал искрового и дугового разрядов.

Положительный столб представляет собой так называемую неизотермическую плазму. В такой плазме средние кинетические энергии электронов, ионов и нейтральных молекул (атомов) различны.

Вспомним связь между средней кинетической энергией молекул идеального газа (давление газа в тлеющем разряде невелико, поэтому его можно считать идеальным) и температурой

Можно утверждать, что температуры компонентов плазмы различны. Так, электронная температура в тлеющем разряде в неоне при давлении 3 мм. рт. ст., порядка 4∙10 4 К, а температура ионов и атомов 400 К, причем температура ионов несколько выше атомной температуры.

Плазма, в которой выполняется равенство: (где индексы «э», «и», «а» относятся к электронам, ионам, атомам) называется изотермической. Такая плазма имеет место при ионизации с помощью высокой температуры (дуга, горящая при атмосферном и выше давлении, искровой канал); например, в дуге сверхвысокого давления (до 1000 атм.) температура плазмы достигает 10000 К, температура плазмы при термоядерном взрыве – порядка нескольких десятков миллионов градусов, в установке «ТОКАМАК» для исследования термоядерных реакций – порядка 7∙10 6 K.

Плазма может возникнуть не только при прохождении тока через газ. Газ можно перевести в плазменное состояние и путем его нагревания до высоких температур. Внутренние области звезд (в том числе и солнце) находятся в плазменном состоянии, температуры которых достигают 10 8 К (рис. 8.10).

Кулоновское дальнодействующее взаимодействие заряженных частиц в плазме приводит к качественному своеобразию плазмы, позволяющему считать ее особым, четвертым агрегатным состоянием вещества.

Важнейшие свойства плазмы:

  • сильное взаимодействие с внешними магнитными и электрическими полями, связанное с ее высокой электропроводностью;
  • специфическое коллективное взаимодействие частиц плазмы, осуществляющееся через усредненные электрические и магнитные поля, которые создают сами эти частицы;
  • благодаря коллективным взаимодействиям плазма ведет себя как своеобразная упругая среда, в которой легко возбуждаются и распространяются различного рода колебания и волны (например, ленгмюровские колебания плазмы);
  • во внешнем магнитном поле плазма ведет себя как диамагнитная среда;
  • удельная электрическая проводимость σ полностью ионизованной плазмы не зависит от плотности плазмы и увеличивается с ростом термодинамической температуры, пропорционально . При Т ≥ 10 7 К, σ столь велика, что плазму можно приближенно считать идеальным проводником ( ).

Плазма – наиболее распространенное состояние вещества во Вселенной. Солнце и другие звезды состоят из полностью ионизованной высокотемпературной плазмы. Основной источник энергии излучения звезд – термодинамические реакции синтеза, протекающие в недрах звезд при огромных температурах. Холодные туманности и межзвездная среда также находятся в плазменном состоянии. Они представляют собой низкотемпературную плазму, ионизация которой происходит, главным образом, путем фотоионизации под действием ультрафиолетового излучения звезд. В околоземном пространстве слабоионизованная плазма находится в радиационных поясах и ионосфере Земли. С процессами, происходящими в этой плазме, связаны такие явления, как магнитные бури, нарушения дальней радиосвязи и полярные сияния.

Низкотемпературная газоразрядная плазма, образующаяся при тлеющем, искровом и дуговом разрядах в газах, широко используется в различных источниках света, в газовых лазерах, для сварки, резки, плавки и других видов обработки металлов.

Основной практический интерес к физике плазмы связан с решением проблемы управляемого термоядерного синтеза – процесс слияния легких атомных ядер при высоких температурах в управляемых условиях. Энергетический выход реактора составляет 10 5 кВт/м 3 в реакции

при плотности плазмы 10 5 см — 3 и температуре 10 8 К.

Удерживать высокотемпературную плазму предлагается (1950 г. СССР, И. Е. Тамм, А. Д. Сахаров) сильным магнитным полем в тороидальной камере с магнитными катушками, сокращенно — токамак. На рисунке 8.11 изображена схема токамака: 1 – первичная обмотка трансформатора; 2 – катушки тороидального магнитного поля; 3 – лайнер, тонкостенная внутренняя камера для выравнивания тороидального электрического поля; 4 – катушки тороидального магнитного поля; 5 – вакуумная камера; 6 – железный сердечник (магнитопровод).

В настоящее время, в рамках осуществления мировой термоядерной программы, интенсивно разрабатываются новейшие системы типа токамак. Например, в Санкт Петербурге создан первый Российский сферический токамак «Глобус-М». Планируется создание крупного токамака ТМ-15, для исследования управления конфигурацией плазмы. Начато сооружение Казахстанского токамака КТМ для отработки технологий термоядерной энергетики. На рисунке 8.12 приведена схема токамака КТМ в сечении и его вид с вакуумной камерой.

Осуществление управляемой термоядерной реакцией в высокотемпературной плазме позволит человечеству в будущем получить практически неисчерпаемый источник энергии.

Низкотемпературная плазма (Т

10 3 К) находит применение в газоразрядных источниках света, газовых лазерах, термоэлектронных преобразователях тепловой энергии в электрическую. Возможно создание плазменного двигателя, эффективного для маневрирования в космическом пространстве и длительных космических полетов.

Плазма служит в качестве рабочего тела в плазменных ракетных двигателях и МГД-генераторах.

Движение плазмы в магнитном поле используется в методе прямого преобразования внутренней энергии ионизованного газа в электрическую. Этот метод осуществлен в магнитогидродинамическом генераторе (МГД-генераторе), принципиальная схема которого показана на рисунке 8.13.

Сильно нагретый ионизованный газ, образующийся в результате сгорания топлива и обогащения продуктов сгорания парами щелочных металлов, которые способствуют повышению степени ионизации газа, проходит через сопло и расширяется в нем. При этом часть внутренней энергии газа преобразуется в его кинетическую энергию. В поперечном магнитном поле (на рисунке 8.9 вектор магнитной индукции поля направлен за плоскость чертежа) положительные ионы отклоняются под действием сил Лоренца к верхнему электроду А, а свободные электроны – к нижнему электроду К. При замыкании электродов на внешнюю нагрузку в ней идет электрический ток, направленный от анода А, МГД-генератора, к его катоду К.

Свойства плазмы излучать электромагнитные волны ультрафиолетового диапазона используются в современных телевизорах с плоским плазменным экраном. Ионизация плазмы в плоском экране происходит в газовом разряде. Разряд возникает при бомбардировке молекул газа электронами, ускоренными электрическим полем — самостоятельный разряд. Разряд поддерживается достаточно высоким электрическим потенциалом – десятки и сотни вольт. Наиболее распространенным газовым наполнением плазменных дисплеев является смесь инертных газов на основе гелия или неона с добавлением ксенона.

Экран плоского телевизора или дисплея на газоразрядных элементах составлен из большого числа ячеек, каждая из которых — самостоятельный излучающий элемент. На рисунке 8.14 показана конструкция плазменной ячейки, состоящей из люминофора 1, электродов 2, инициирующих плазму 5, слоя диэлектрика (MgO) 3, стекла 4, адресного электрода 6. Адресный электрод вместе с основной функцией проводника, выполняет функцию зеркала, отражающего половину света, излучаемого люминофором, в сторону зрителя.

Читайте также:  Допустимый ток для кабеля аввг 4х16

Срок службы такого плазменного экрана 30 тыс. часов.

В плоских газоразрядных экранах, воспроизводящих цветное изображение, применяются три разновидности люминофоров, излучающих красный (R), зеленый (G) и синий (B) свет. плоский телевизор с экраном из газоразрядных элементов содержит около миллиона маленьких плазменных ячеек, собранных в триады RGB – пиксели (pixel – picture element).

Источник

Презентация на тему Плазма Электрический ток в плазме

ПлазмаЭлектрический ток в плазме

Описание презентации по отдельным слайдам:

Плазма
Электрический ток в плазме

— это четвертое агрегатное состояние вещества с высокой степенью ионизации за счет столкновения молекул на большой скорости при высокой температуре; встречается в природе: ионосфера — слабо ионизированная плазма, Солнце — полностью ионизированная плазма; искусственная плазма — в газоразрядных лампах.
Что такое плазма?

Философы античности, начиная с Эмпедокла, утверждали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Это положение с учётом некоторых допущений укладывается в современное научное представление о четырёхагрегатных состояниях вещества, причем плазме, очевидно, соответствует огонь.[1] Свойства плазмы изучает физика плазмы.
4 стихии и плазма

Искусственно созданная плазма (плазменная лампа, плазменные ракетные двигатели и т.д.)
Земная природная плазма (молния, северное сияние)
Космическая плазма
Формы плазмы

Низкотемпературная ( при температурах ниже 100 000К)
Высокотемпературная ( при температурах больше 100 000К)
Идеальная
Неидеальная
Равновесная
Неравновесная
Плазма бывает:

Сложные плазменные явления!
Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц, из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.

Способ создания плазмы путем обычного нагрева вещества – не самый распространенный. Чтобы получить термическим путем полную ионизацию плазмы большинства газов, нужно нагреть их до температур в десятки и даже сотни тысяч градусов. Только в парах щелочных металлов (таких, например, каккалий, натрий или цезий) электрическую проводимость газа можно заметить уже при 2000–3000° С, это связано с тем, что в атомах одновалентных щелочных металлов электрон внешней оболочки гораздо слабее связан с ядром, чем в атомах других элементов периодической системы элементов (т.е. обладает более низкой энергией ионизации)
Получение плазмы

Общепринятым способом получения плазмы в лабораторных условиях и технике является использование электрического газового разряда. Газовый разряд представляет собой газовый промежуток, к которому приложена разность потенциалов. В промежутке образуются заряженные частицы, которые движутся в электрическом поле, т.е. создают ток. Для поддержания тока в плазме нужно, чтобы отрицательный электрод (катод) испускал в плазму электроны. Эмиссию электронов с катода можно обеспечивать различными способами, например нагреванием катода до достаточно высоких температур (термоэмиссия), либо облучением катода каким-либо коротковолновым излучением (рентгеновские лучи, g-излучение), способным выбивать электроны из металла (фотоэффект). Такой разряд, создаваемый внешними источниками, называется несамостоятельным.
Получение плазмы

— высокая электропроводность
— сильное взаимодействие с внешними электрическими и магнитными полями.
При температуре больше 100000 градусов
любое вещество находится в состоянии плазмы.
Интересно, что 99% вещества во Вселенной — плазма.

Основные свойства плазмы

Суммарный ток в плазме можно записать как сумму трех компонент в ортогональных направлениях

J = σ0 (E•b)b + σп[bx(Exb)] — σx(Exb)

где первый член определяется продольной проводимостью σ0 и задает ток вдоль магнитной силовой линии, второй — проводимостью Педерсена в направлении вектора электрического поля и третий, ток Холла, течет в направлении перпендикулярном как к к электрическому так и к магнитному полю.

В слое Е ионосферы педерсеновская и холловская проводимости достаточно велики, выше превалирует продольная проводимость,а в нижней ионосфере при высокой частоте соударений холловский ток мал, педерсеновская и продольная проодимости примерно равны.

Физики получили самую плотную материю
Очередной рекорд был поставлен в рамках эксперимента, воспроизводящего условия сразу после Большого взрыва. Созданная в Большом адронном коллайдере материя была значительно горячее центра Солнца и плотнее недр нейтронной звезды.

Над проектом работали:
Гладковская А.
Позняк М.
Спасибо за внимание!

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Плазма. Свойства и получение. Применение и отличие. Особенности

Плазма – это ионизированный газ, содержащий электроны, а так же положительно и отрицательно заряженные ионы. Она является одним из четырех основных агрегатных состояний веществ.

Физическое объяснение плазмы и способы ее получения

Традиционно утверждалось, что существует 3 основных агрегатных состояний веществ. Они могут быть жидкими, твердыми и газообразными. Об этом говорили ученые с самого начала существования известной науки. С развитием технологий и научных наблюдений было установлено четвертое состояние веществ, именуемое плазмой. Обычно она возникает в результате сильного нагрева. Процесс ее образования выглядит следующим образом. Любое твердое вещество при очень сильном нагреве сначала плавится, после чего переходит в газообразное состояние, при продолжении температурного воздействия осуществляется его дальнейшее распадение на свободные атомы. От продолжающегося повышения температуры осуществляется отделение электронов, а также положительно и отрицательно заряженных ионов. В результате получается ионизированный газ, являющийся плазмой.

Plazma 1

Впервые о плазме заговорил английский физик сэр Уильям Крикс в 1879 году. Предложенная им концепция активно развивалась и совершенствовалась, что наблюдается и сегодня. Существуют различные предположения, которые указывают на то, что плазма была открыта намного раньше. Об этом можно судить даже по древнему утверждению о существовании четырех стихий: земля, вода, воздух и огонь. Они тесно переплетаются с современным трактованием 4 агрегатных состояний: твердое, жидкое, газообразное и плазменное. В определенных смыслах можно вполне сопоставить плазму и огонь.

Помимо получения плазмы в результате термической обработки вещества, его также можно выделить проводя бомбардировку газа быстрыми заряженными частицами. Для этого проводится облучение радиоактивными веществами. В таких случаях осуществляется выработка низкотемпературной плазмы.

Читайте также:  Входного сопротивления при резонансе токов

Также была разработана технология получения газоразрядной плазмы. Для этого через газ пропускается электрический ток, вызывающий его ионизацию. Ионизированные частицы переносят ток, что приводит к их дальнейшему разрушению. Получаемая в результате электрического воздействия плазма менее эффективна в плане сохранения жизнедеятельности, чем образованная от термической обработки. Это связано с меньшим нагревом и высокой скоростью охлаждения частиц, так как они постоянно контактируют с другими ионами, не получившими необходимого нагрева.

Более сложный способ ее образования заключается в сильном сжатии вещества. Подобные методы воздействия приводят к сходу атомов со своих орбит. Возникающие в результате отдельные положительно и отрицательно заряженные частицы приобретают определенные свойства, которые могут применяться в различных сферах при обработке материалов.

Свойства плазмы

Главным свойством плазмы является высокая электрическая проводимость, значительно превосходящая прочие агрегатные состояния веществ. При этом суммарный электрический заряд равен нулю. Плазма подвержена влиянию магнитного поля. Под его воздействием она способна концентрировать струю, что позволяет проводить контроль движения газа.

Plazma 2

Также для плазмы характерно корректирование взаимодействия. У обычного газа происходит сталкивание частиц по двое, а в случае с плазмой электроны сталкиваются чаще и крупными группами.

Свойства плазмы могут отличаться в зависимости от ее разновидности. По термическим свойствам ее разделяют на 2 вида:
  • Низкотемпературная.
  • Высокотемпературная.

Для низкотемпературной плазмы характерен нагрев менее чем до 1 млн. Кельвинов. Высокотемпературный газ имеет температуру как минимум 1 млн. Кельвинов. Последняя разновидность плазмы принимает участие в термоядерном синтезе.

Проявление плазмы в природе

Считается, что 99% Вселенной представлено плазмой. Любая звезда состоит именно из ионизированного газа. Впервые об этом начали задумываться наблюдая за Солнцем. Исходящий от него ветер является ничем иным, как плазмой.

Vsplesk na solntse

Наблюдать плазму можно и в ионосфере. Визуально этот эффект можно заметить рассмотрев пример полярного сияния. Оно образовывается в результате облучения азота и кислорода солнечным излучением. Конечно, пример с полярным сиянием не столь удачный, поскольку данное явление можно увидеть только в определенных участках местности, малодоступной для большинства людей. Более частым проявлением природной плазмы, которое встречается везде, является момент удара молнии. Электрический искровой разряд, появляющийся в грозу, это и есть сильно ионизирующий газ.

Раньше считалось, что огонь это тоже разновидность плазмы, но это утверждение в корне неверно. Для плазмы характерна температура от 8000 градусов. Самое мощное пламя даже при обдуве кислородом не может нагреваться выше 4000 градусов.

Отличие плазмы от газов

На первый взгляд может показаться, что плазма и газ это довольно взаимосвязанные агрегатные состояния, которые можно объединить в одно понятие. Все же существует ряд особенностей, позволяющие их разделить. В первую очередь можно отметить электрическую проводимость. У газа она крайне мала. Ярким примером будет воздух. Сам по себе он отличный диэлектрик, поэтому по нему электрический заряд не передается. Стоит его довести до состояния плазмы, как ситуация кардинально меняется, ведь по ней заряд передается вполне эффективно.

Также плазму от газов отличает однородность частиц. Для газов характерно, что в их структуре присутствуют подобные друг к другу составляющие. Они постоянно двигаются и взаимодействуют между собой на сравнительно небольшом расстоянии. В случае же с плазмой в ней есть как минимум 2-3, а то и больше вида частиц. В ее составе наблюдаются электроны, ионы и нейтральные частицы. Их свойства отличаются между собой. У них может быть разная скорость или температура. Именно по этой причине для плазмы характерна неустойчивость и сложность управления, поскольку многие ее составляющие действуют отличительно от прочих.

Где применяется плазма

В последнее время появилось довольно много приборов, устройство которых предусматривает работу где применяется плазма. Впервые ионизированные газы начали использоваться при создании светотехники. Ярким тому примером станут газоразрядные лампы. Принцип действия таких лампочек заключается в передаче электрического тока через газ заключенный в колбе. В результате наблюдается ионизация с получением ультрафиолетового излучения. Последнее поглощается люминофором, что и вызывает его свечение в видимом для человеческого глаза диапазоне.

Gazorazriadnye lampy

Особо востребованной технологией является плазменная резка. Таким оборудованием создается разогретая струя, способная плавить металлы и практически все вещества, встречаемые на ее пути. Обычно такое оборудование превращает в ионизированный газ обыкновенную воду. Сначала она испаряется, после чего под воздействием электрического тока из нее формируется плазменный пучок.

Plazmennaia rezka

Принцип плазмы может применяться для осуществления передачи данных на расстояние. В связи с этим проводится активная разработка плазменных антенн. Данная идея запатентована еще в 1919 году, но так и не была полноценно применена вплоть до начало XXI века. Технические наработки испытания такого оборудования дают основание полагать, что эта технология придет на замену привычного для всех wi-fi соединения. Она обладает большей скоростью передачи данных, а также возможностью действия в большом радиусе. Проводимость плазмы превышает проводимость серебра, которое является одним из лучших твердых веществ для передачи зарядов.

Plazma 3

Также в промышленности началось внедрение технологии напыления расплавленного материала под воздействием плазменной струи. Металл, или другой материал, расплавляется, после чего подается на струю в плазму. В результате он распыляется, дополняя струю. После этого взаимодействия с плазмой прекращается, и материал оседает на требуемых поверхностях в виде тонкого покрытия. Этот метод позволяет провести обработку гораздо быстрее, чем в случае с электрохимическим методом.

Применение плазмы в научном проекте Токамак

Всемирно известный научный проект Токамак, являющийся сокращением полного названия тороидальная камера с магнитными катушками – это установка для магнитного удержания плазмы. Она разработана с целью поддержания условий для проведения управляемого термоядерного синтеза. Впервые эта установка была построена в 1954 году, после успеха проведенных испытаний, в мире было создано более 200 ее копий, где осуществляются исследования и сегодня.

Tokamak

Особенность данного проекта заключается в обеспечении контроля ионизированного газа. В Токамаке плазма удерживается с помощью магнитного поля. Такой способ применяется, поскольку создать ограждение стенками для предотвращения утечки плазмы невозможно. Любое вещество при контакте с ней расплавляется. Чтобы магнитное поле могло подействовать ионизирующий газ, через него пропускают электрический ток. Он обеспечивает создание электрического поля. Также прохождение тока активизирует набор высокой температуры.

Исследование плазмы, позволят реализовать идею контролируемого термоядерного синтеза. Как следствие удастся создать высокоэффективные электростанции, работающие значительно безопаснее атомных, и не создающих вредного выброса в атмосферу.

Читайте также:  Движение постоянного магнита в катушке сила тока

Источник



Теория Электрической Вселенной. Часть 7: Межзвездная плазма. Электрический ток в плазме

Рис. 19: Ток Биркеланда, протекающий через

До недавнего времени космос считался полностью пустым, идеальным вакуумом. Этой точки зрения всё ещё придерживаются в широких научных кругах, хотя это и не совсем верно. Космос не пустой. Он заполнен плазмой. Эта космическая плазма состоит главным образом из очень лёгких молекул: ионов гелия, водорода и электронов, и их концентрация составляет приблизительно одну (ионизированную) частицу на каждый кубический сантиметр. [47] Для сравнения, концентрация воздуха в атмосфере составляет приблизительно 10 13 частиц на кубический сантиметр.

На рис. 19 изображён ток Биркеланда, пересекающий световые годы «пустого» космоса и демонстрирующий тем самым тот факт, что очень низкая концентрация космической плазмы не препятствует возникновению явлений электрической природы. Помните эксперимент Милликена и то, как электромагнитная сила, созданная одним единственным электроном, повлияла на большую часть окружающего его пространства? В космических масштабах электрические свойства плазмы позволяют электрическим токам течь между небесными телами, поскольку плазма является очень хорошим проводником. Это позволяет существовать электрическим взаимодействиям между поверхностью небесного тела и внешним слоем его двойной прослойки, а также взаимодействиям внутри неё.

Согласно Хэннесу Альфвену (Hannes Alfven) и Джеймсу Маккэнни (James McCanney), плазма в космосе электрически практически нейтральна или лишь немного позитивна. Однако в научных кругах имеются некоторые разногласия по поводу электрического заряда (полярности) солнечного ветра. В то время как официальная теория утверждает, что солнечный ветер электрически нейтрален, британский математик и геофизик Сидни Чепмен (Sydney Chapman) заявил ещё в 1930 г., что солнечный ветер состоит из положительно заряженной плазмы. Совсем недавно физик Луис Альварес (Luis Alvarez) [48] утверждал, что солнечный ветер проявляет, в общем, положительный электрический заряд. [49] Жан Мартен Менье [50] (Jean Martin Meunier) также утверждает, что солнечный ветер не является электрически нейтральным и объясняет это следующим образом:

Электрический ток в плазме

Помните плазменный шар и светящиеся нити, соединяющие центральный электрод и внешний пластиковый слой шара? Это типичный разряд плазменного тока. Но почему плазма принимает такую нитевидную форму? Чтобы понять этот феномен, мы должны вспомнить курс физики средней школы, а точнее, урок об электромагнетизме и о том, как электромагнитное поле генерируется электрическим током.

Рис. 20: Магнитное поле, генерируемое электрическим током, текущим по проводу.

Рис. 21: Линии магнитного поля

Теперь, когда мы знаем, как ведёт себя единичная нить плазменного тока, или ток Биркеланда, давайте посмотрим, что происходит в случае двух расположенных рядом плазменных нитей, как показано на рис. 22. Поначалу магнитные поля, генерируемые каждой нитью, притягиваются друг к другу и стремятся к слиянию. Эти электромагнитные взаимодействия заставляют нити сближаться друг с другом (в верхней части рисунка). Затем вращающиеся магнитные поля заставляют нити обвиваться одна вокруг другой (в нижней части). Это называется плазменным вихрем.

Рис. 22: Электромагнитное взаимодействие приводит к сближению и скручиванию пары спирально формирующихся нитей, также известное как

Заметьте, что сначала две нити притягиваются друг к другу магнитными силами, но как только они достаточно сблизились, образуется сила отталкивания, которая не даёт им сблизиться. В плазме происходит притяжение частиц друг к другу силой Лоренца (см. следующую главу), что приводит к её сжатию. Но затем сжатие прерывается увеличением давления газа в плазме. Притяжение и отталкивание действуют совместно, создавая очень стабильную структуру, в которой нити держатся на определенном расстоянии друг от друга. Они и не сливаются, и не разъединяются.

Запомните эти скрученные формы и вращающиеся движения, поскольку в дальнейших главах мы столкнёмся с многочисленными случаями их возникновения в природе (например, вихри, ураганы, формы галактик, хвосты комет, солнечные ветры, вращение звёзд и планет и т.д.). К примеру, Энтони Перрат (Anthony Peratt) [54] использовал эффект скручивания плазменных нитей, наблюдаемый в лабораторных условиях, для объяснения процесса формирования галактик (рис. 23).

Рис. 23: Симуляция формирования галактики с помощью суперкомпьютера Энтони Перратом, основывающаяся на взаимодействии заряженных частиц.

[47]: Tsytovich, V. N., Elementary Physics of Complex Plasmas, стр. 7

[48]: Луис Альварес (1911 — 1988), исследователь из Университета Беркли, обладатель Нобелевской премии по физике в 1968 г.

[49]: Trower, W. P., Luis Walter Alvarez — A biographical memoir, стр. 7

[50]: Бывший исследователь Национального центра научных исследований (CNRS) и экс-секретарь Французского отделения Международной ассоциации геомагнетизма и аэрономии (IAGA).

[51]: Nodon, A., ‘Prévisions météo d’après les taches solaires’. См.: albert-nodon.e-monsite.com/pages/recherche-au-20-siecle/previsions-meteo-d-apres-les-taches-solaires/

[52]: Пинчи (сжатия) создаются в лабораториях на оборудовании, связанном с ядерным синтезом. Также они могут становиться нестабильными и генерировать излучение по всему электромагнитному спектру, включая радиоволны, рентгеновское и гамма-излучение, а также нейтроны и синхротронное излучение. Существуют разные виды пинчей, включая тета-пинчи, спиральные пинчи и Z-пинчи. Это обозначение связано с направлением тока в технических устройствах, то есть к оси Z на математической диаграмме. Любой механизм, приводящий к пинч-эффекту благодаря току, протекающему в этом направлении, называется Z-пинч системой, и её использование охватывает большое число устройств, имеющих множественное применение, включая исследования термоядерной энергии. Пинчи используются для генерации рентгеновского излучения, а также находят применение в пучках частиц, лучевом оружии и в астрофизике.

[53]: В 1913 году Кристиан Биркеланд писал, что то, что мы сегодня называем «солнечным ветром», генерирует ток в космосе и вызывает полярные сияния. В то время теория Биркеланда оспаривалась британским геофизиком и математиком Сидни Чепманом (Sydney Chapman), ведущим учёным в области физики космоса. Он настаивал на общепринятой точке зрения о том, что ток не может проходить через космический вакуум, и, следовательно, токи должны были иметь земное происхождение. Однако в 1967 году теория Биркеланда, упомянутая ранее как «выходящая за рамки общепринятого», была успешно подтверждена благодаря данным, собранным спутником 1963-38С ВМС США. В настоящее время эти выровненные в магнитном поле токи называются токами Биркеланда, в честь их открывателя.

[54]: Энтони Перрат является ведущим физиком в области изучения плазмы. Он автор основополагающей работы Physics of the Plasma Universe. В настоящее время Перрат исследует археологические доказательства крупных космических событий прошлого, связанных с космической плазмой.

Комментарий: Читайте все переведенные главы из книги Пьерра Лескодро (Pierre Lescaudron) «Земные изменения и взаимосвязь между человеком и космосом» (Earth Changes and the Human Cosmic Connection), и другие интересные статьи, имеющие отношение к этой же тематике:

Pierre Lescaudron (Profile)

Пьерр Лескодро (M.Sc, MBA) родился в 1972 г. в Тулузе, Франция. Он сделал карьеру в административном руководстве, консалтинге и обучении аспирантов высокотехнологичных областей науки и промышленности.

Позже он стал редактором SOTT.net, исполнив свою заветную мечту изучать науку, технологию и историю.

Ему особенно нравится «связывать различные факты в единое целое» и сочетать области науки, которые традиционно считаются несвязанными между собой.

Источник