Меню

Автоматизированный электропривод постоянного тока

Автоматизированный и автоматический электропривод в чем разница?

Многие ошибочно полагают что электропривод – это электродвигатель выполняющий какую-то работу. На самом деле это не совсем верно. В систему электропривода входит не только электродвигатель, но и редуктор, система управления к нему, датчики обратной связи, различные реле и пр. Это не электрическая система, а электромеханическая. Она может быть регулируемой (автоматизированной, автоматической или не автоматизированной) или не регулируемой (насосы бытовые и пр.). Мы рассмотрим виды регулируемых устройств.

Не автоматизированный электропривод

При работе данного устройства все действия по регулированию каких-либо координат выполняются в ручном режиме. То есть для работы данного типа устройств необходим оператор, человек который будет следить за правильностью выполнения процессов. Как пример можно привести крановый электропривод, где все действия выполняются оператором.

Автоматизированный электропривод

В отличии от не автоматизированных приводов, в автоматизированных присутствуют сигналы обратной связи по координатам или параметрам (ток двигателя, скорость, положение, момент). Ниже приведена структурная схема:

Струксхема

Структурная схема автоматизированного электропривода

ЗА – защитная аппаратура (автоматические выключатели, предохранители и пр.)

ПЭЭ – преобразователь электрической энергии (частотник, тиристорный преобразователь)

ДТ – токовый датчик

ДН – датчик напряжения

СУ ПЭЭ – система управления преобразователем

ПУ – пульт управления

ПМ – передаточный механизм (муфта, редуктор и пр.)

РО – рабочий орган

При такой структуре управления СУ ПЭЭ управляет не только преобразователем, но и всей системой сразу. При таком управлении датчики обратной связи обеспечивают контроль за параметрами и сигнализируют об этом оператору. Данная система в автоматическом режиме может проводить некоторые операции (пуск, останов и пр.), но все равно требуется присутствие человека, для контроля, за работой данного устройства. Например, пуск много конвейерной линии, где пускаются не все конвейеры сразу, а по очереди, где учитывается также время пуска каждой линии и условия пуска. Точно также они и останавливаются.

Как видим из структурной схемы сигналы обратной связи приходят на пульт оператора, который непосредственно соблюдает технологический процесс, и часть приходит в систему управления преобразующим устройством для осуществления основных защит и отработки некоторых изменений задающего сигнала, поступающего с пульта управления.

Автоматический электропривод

Для работы электропривода в автоматическом режиме не требуется присутствие человека. В данном случае все происходит автоматически. Ниже приведена структурная схема:

Струксхема1

Структурная схема системы автоматического управления электроприводом

АСУ ТП – автоматическая система управления технологическим процессом

Как видим из структурной схемы что в АСУ ТП приходят все датчики обратной связи. В ней происходит обработка сигналов от датчиков, и выдаются управляющие сигналы для других подсистем. Данная структура управления очень удобна, так как не требует постоянного наблюдения оператора за технологическим процессом, и снижает влияние человеческого фактора. Например модернизированные шахтные подъемные машины, которые могут работать в автоматическом режиме ориентируясь по датчикам обратной связи

В современном мире активно внедряются АСУ ТП не только для электроприводов. Очень редко встречаются системы с ручным управлением технологическими процессами все они либо автоматизированные, либо на этих линиях полностью внедрены АСУ ТП.

Источник

Электроприводы постоянного тока

Электроприводы постоянного тока работают за счет электромагнитной индукции и используются для превращения поданной энергии во вращательные или поступательные движения.

Мощность оборудования зависит от конструктивных особенностей, в особенности количества полученного ресурса и его потерь при преобразовании (КПД).

Классифицируют электроприводы по способу возбуждения:

  1. Независимые. Обмотку питает подключаемый источник тока.
  2. Шунтовые. Параллельное подключение обмотки возбуждения и источника питания.
  3. Сериесные. Последовательное подключение.
  4. Компаундные. Совмещают последовательное и параллельное подключение.

Электроприводы постоянного тока применяют на производствах как моторы для станков и других видов машин, в бытовой технике (стиральные машины, пылесосы, фены, часы) и ЖД и автотранспорте.

Данный вид двигателей показывает наилучшие результаты в системах, где требуется:

  • режим работы в 4-х квадрантах с рекуперацией;
  • продолжительная эксплуатация на низких скоростях;
  • динамичное и интенсивное производство – регулярные разгоны и остановки с минимальным выделением тепла при работе;
  • минимальные габариты и вес оборудования;
  • тонкая настройка скорости в широком диапазоне при неизменной мощности.

Электродвигатель постоянного тока не предназначен для работы в загрязненных средах (стандартная степень защиты корпуса IP 23, максимум 54) и требует регулярного ТО.

Как выбрать электропривод постоянного тока

Согласно данным рыночных исследований компании «Интехникс» спрос на двигатели с широким и точным диапазоном регулирования скоростей, в том числе и вверх от номинального значения ежегодно возрастает на 6-8%.

Микропроцессорные силовые статические преобразователи, функциональная составляющая DC и AC электроприводов сглаживают разницу между двумя видами оборудования, но традиционный привод постоянного тока по-прежнему более устойчив к перегрузкам и способен проводить рекуперацию.

При подборе технической оснастки для выполнения производственных задач опираются на 6 факторов:

  1. Цена двигателя, необходимого для эксплуатации комплектующих, монтажа.
  2. Размер текущих расходов на поддержание работоспособности – ТО, аренда площади, КПД.
  3. Габариты, масса и время срабатывания (отклик, разгон, 4-х квадрантные операции, аварийная защита).
  4. Гарантийный срок, соответствие международным и российским отраслевым стандартам.
  5. Влияние на окружение – искажение напряжения в сети, электромагнитная совместимость.
  6. Реализация и эффективность отвода тепла.
Читайте также:  Ток тетерева что это

Несмотря на относительно высокую стоимость данного вида оборудования, обусловленную сложностью сборки и требовательностью к условиям эксплуатации (по сравнению с асинхронными двигателями), анализ среднестатистических моделей DC и AC показывает преимущества приводов постоянного тока. В том числе для намоточных устройств, испытательных стендов, буровых установок.

Во время модернизации производства производят полную замену техники или ее компонентов, если это рентабельно.

Вместо инсталляции привода переменного тока в синхронном двигателе меняют преобразователь или его модули, внедряют цифровую управляющую электронику вместо аналоговой, приводную систему приводят к частотно-регулируемому виду.

Последнее решение считается специалистами оптимальным, в том случае если финансовые и временные затраты на монтаж не нанесут существенного ущерба работе предприятия.

Больше о современных электроприводах постоянного тока можно узнать на выставке «Электро».

Источник

Автоматизация электроприводов и производственного оборудования

Мировой опыт создания нового и модернизации технологического оборудования показывает устойчивую тенденцию развития автоматизированного оборудования, регулируемых приводов, компьютерных систем автоматизации, широкое распространение программируемых контроллеров. Это объясняется стремлением к максимальной производительности и одновременному удешевлению производства, что всегда актуально.

Все ведущие электротехнические корпорации выпускают регулируемые приводы комплектно с гибко программируемыми компьютерными средствами автоматизации предназначеннымидля широкого использования.

Главная функция электрического привода — создавать движение станков, оборудования, а также управлять этим движением — вращательным или поступательным.

Автоматизацию подразделляют на три уровня: частичную, комплексную, полную.

Частичная автоматизация ограничивается автоматизацией отдельных операций технологического процесса, например, с использованием станков с автоматическим управлением,
в том числе и станков с ЧПУ.

Комплексная автоматизация — это автоматизация производственых процессов изготовления деталей и сборки с использованием автоматических систем машин:
автоматических линий, гибких производственных систем,

Если для возобновления рабочего цикла требуется вмешательство оператора, то такое устройство называют полуавтоматом.

Полная автоматизация, когда присутствие человека долгое время не требуется. Чем больше это время, тем выше степень автоматизации.

Самая высокая степень — роботизация — применение промышленных роботов, функционирование без участия человека.

avtomatiziravonnye-oborudovanieА втоматизировано может быть не только производство, но и планирование, регулирование, проектирование и другие этапы.

Автоматизированное оборудование, в сравнении с ручным трудом человека, в промышленных масштабах имеет колоссальные преимущества: позволяет экономить материалы, энергию, кроме того повышается безопасность производства и, конечно, увеличивается качество продукции. Но вместе с тем оно нуждается в высококвалифицированном персонале.

Базовая задача регулируемого электропривода — обычно сводится к регулированию скорости вращения двигателя и корректировке параметров тока, поступающего от сети. К общим задачам этого процесса относится — точное соблюдение технологического режима, энергосбережение безопасность работы.

Производитеся регулирование таких переменных, как скорость, ускорение и положение исполнительного органа рабочей машины, положение ротора, регулирование момента на валу двигателя, регулирование мощности, регулирование магнитного потока и т. п. Для роботов — манипуляторов характерно движение рабочего органа одновременно в нескольких координатах, что тоже программируется.

Автоматизированная (автоматическая) система управления технологическими процессами (АСУ ТП ) — это совокупность технических средств и методов сбора, обработки, анализа и выдачи информации и воздействия на ТП, которые во взаимодействии с человеком и (или) между собой обеспечивают запланированное протекание технологического процесса.

В настоящее время, когда в производстве используется все больше средств автоматизации и появляются не только полностью автоматизированные цеха, но и предприятия, вопросы «сотрудничества» человека и машины приобретают первостепенное значение.

avtomatizirovannoye-oborudovanieСовременные промышленные объекты представляют собой совокупность взаимосвязанных многорежимных управляемых подсистем, объединенных общей системой управления с центральной ЭВМ. Производственные процессы осуществляются на автоматических линиях гибкими производственными модулями на базе минимизированных вариантов ЭВМ — микропроцессоров и микро-ЭВМ. Гибкими их называют потому, что они способны быстро перестраиваться с производства одних изделий на производство других, что позволяет постоянно модифицировать производство, расширять ассортимент и повышать качество продукции. Вспомогательные операции и часть основных операций выполняются промышленными роботами. Все это оборудование совместно с автоматическими системами транспортирования, проектирования и подготовки производства образует гибкое автоматизированное производство.

К элементам автоматизации производства относят:

  • Станки с ЧПУ;
  • Промышленные роботы;
  • Роботизированные технологические комплексы;
  • Комплексные шкафы управления;
  • Гибкие производственные системы;
  • Автоматизированные складские системы;
  • Системы контроля качества на базе ЭВМ;
  • Система автоматического проектирования (англ. Computer-aided Design, CAD) используется проектировщиками при разработке новых изделий и технико-экономической документации.

Система автоматизированного проектирования реализует информационную технологию выполнения функций проектирования, представляет собой организационно-техническую систему, предназначенную для автоматизации процесса проектирования, состоящую из персонала и комплекса технических, программных и других средств автоматизации его деятельности. Также для обозначения подобных систем широко используется аббревиатура САПР. Первая советская/российская система автоматизированного проектирования была разработана в конце 80-х годов XX века рабочей группой Челябинского политехнического института, под руководством профессора Кошина.

  • Планирование и увязка отдельных элементов плана с использованием ЭВМ — Computer-Aided Process Planning (CAPP), автоматизированная технологическая подготовка производства — это программные продукты, помогающие автоматизировать процесс подготовки производства, а именно планирование (проектирование) технологических процессов.
Читайте также:  Устройство амперметра с трансформатором тока

Автоматизация какого-либо технологического процесса (АСУ ТП) слагается из следующих элементов: автоматизация контроля, регулирования и защиты.

Автоматизация контроля — обеспечивает систематическое наблюдение за ходом процесса при помощи указывающих самопишуших регистрирующих приборов.

Автоматизация управления процессом заключается в автоматическом пуске, останове, изменении скорости и реверсировании механизмов с требуемой последовательностью. Автоматизация управления часто сопровождается блокировкой, которая на допускает неправильных операций.

Автоматизация регулирования осуществляет рациональное протекание процесса в функции технологических параметров с заданной точностью, недостижимой при регулировании вручную. Таково, например, автоматическое регулирование температуры пресс-форм в трикотажном или меховом производстве.

Классификация электроприводов

классификация автоматизированных приводов

Основные группы оборудования, в которых используются автоматизированные электрические приводы:

1) для физической и химической переработки веществ и содержащие энергоемкие однодвигательные электроприводы
с продолжительным режимом работы (насосы, мельницы, дефибреры, смесители, центрифуги);
2) металло-, дерево- и камнеобрабатывающие станки;
3) прокатное, кузнечное, прессовое и штамповочное металлургическое оборудование;
4) резательное (гильотинные, барабанные летучие ножницы, дисковые и ленточные пилы, резательные станки);
5) горнодобывающие (роторные и ковшовые экскаваторы, угледобывающие машины, буровое оборудование и др.);
6) предназначенное для транспортирования и обработки гибких материалов;
7) промышленные роботы и манипуляторы;
8) транспортное и подъемно-транспортное оборудование (краны, транспортеры, конвейры, лифты);
9) контрольно-испутытальное (измерительные машины, испытательные стенды и т.п. );
10) мониторинговое (телевизионые системы наблюдения за техпроцессом, телескопы, радиотелескопы, оптические
системы космического наблюдения и прочие)

В каждой группе выделяются типовые функциональные модули-агрегаты, для которых формируется библиотека
программных моделей и программных блоков, реализующих алгоритмы управления. Наиболее востребована автоматизация в машиностроении в военно-промышленном комплексе.

Классификация по степени автоматизации

виды электроприводоа

В разомкнутом электроприводе — все внешние возмущения выходят на выходную координату. Другими словами, разомкнутый привод не может избежать влияния внешних возмущений: все изменения которых отражаются на его работе. По этой причине он не обеспечивает высокого качества регулирования координат, хотя и отличается в то же время простой схемой. Их обычно используют для торможения, пуска и реверса двигателя.

Замкнутый электропривод, как и любая система автоматического регулирования, может быть реализован по принципу отклонения с использованием обратных связей или по принципу компенсации внешнего возмущения. Отличительным признаком замкнутых систем является полное или частичное устранение влияния внешнего возмущения на регулируемую координату привода. Поэтому этот вид привода обеспечивает более качественное управление движением исполнительного органа рабочей машины, также его схемы являются более сложными.

Все виды применяемых в замкнутом электропривода обратных связей делятся на положительные / отрицательные, линейные / нелинейный, жесткие /гибкие.

У положительной сигнал складывается с задающим сигналом, а у отрицательной обратной связи сигнал направлен встречно.
Жесткая характеризуется тем, что она действует и в установившемся и в переходном режиме.
Гибкая — только в переходных режимах и служит для обеспечения требуемого их качества.
В линейной — пропорционально зависит регулируемая координата и сигнал обратной связи, в то время как в нелинейной связи такая зависимость не прослеживается.

В зависимости от вида регулируемой координаты в электроприводе используются все названные выше связь по скорости, положению, току, напряжению, магнитному потоку и др.

Автоматизиция производства включает автоматизацию информационных и предметных потоков.

Автоматизация предметных потоков — осуществляется с применением автоматических транспортных систем, автоматических складов и накопителей, устройств.

Уровни автоматизации

Различают нижнийполевой — уровень мониторинга производственных процессов.
К нему относятся исполнительные механизмы и датчики, автоматические анализаторы и сама полевая сеть,
соединяющая контроллер с полевыми приборами (если в них встроен микропроцессор) или контроллер с выносными
блоками ввода- вывода.

Срединный уровень — автоматического контроля, сюда относятся микропроцессорные средства автоматизации: контроллер и сетевые комплексы контроллеров, промышленная сеть, сетевой комплекс контоллеров, распределенная система управления или программно-технологический комплекс — сетевой комплекс контроллеров с рабочими станциями.

Верхний уровень — информационный уровень управления — уровень автоматизированного наблюдения за ходом
технологического процесса и управляющих воздействий.

На верхнем — информационном уровне управления производственным объектом — уровне автоматизированного наблюдения за ходом технологического процесса и управляющих воздействий

работает оператор и находятся следующие средства:

рабочая станция оператора — практически это тот или иной персональный компьютер в обычном или
промышленном исполнении с одним или несколькими мониторами, с клавиатурой и/ или мышью,
реализующими связь оператора с контроллерами.

информационная сеть — сеть соединяющая рабочие станции между собой и сервером, имеющаяч выход на
корпоративную сеть предприятия.

Читайте также:  Как найти амплитудное значение силы тока в катушке

сервер — содержит текущую или историческую базы данных компьютера. При клиент-серверной структуре ПТК
через него реализуется связь контроллеров с рабочими станциями операторов.

программное обеспечение систем:

1) основные компоненты программного обеспечения системы — операционные системы рабочих станций и
операционные системы контроллеров

2) SCADA — программа — находящаяся в рабочей станции программа человеко-машинного интерфейса,
связывающая рабочую станцию оператора с контроллерами.

Она обеспечивает оператора всей текущей информацией о состоянии системы и преобразовывает команды
оператора в управляющие сигналы, направленные к конкретным средствам.

3) технологические языки контроля и управления — для программирования контроллеров.

4) библиотке типовых модулей — совокупность отдельных программных модулей, обычно занесенных в постоянную память контроллеров, из которых и создаются типовые функции контроля.

5) автоматизированная система управления тех. процессом — АСУ ТП. Это современная система контроля и управления производственным объектом, состоящая из перечисленных технических и программных средств нижнего среднего и верхнего уровней управления и взаимодейсвующих с ними операторов.и т.п.

Просмотров: 9043 | Дата публикации: Понедельник, 20 июня 2016 07:44 |

Источник



Дисциплина «Автоматизированный электропривод»

Учебно-методические разработки кафедры

Автоматизированный электропривод: практикум / Новосиб. гос. аграр. ун-т, Инженер. ин-т; сост.: А.Ю. Кузнецов, Д.С. Болотов. – Новосибирск: ИЦ НГАУ «Золотой колос», 2017. – 54 с.

Автоматизированный электропривод. Исследование асинхронного двигателя с короткозамкнутым ротором: метод. указания к лаб. раб. / Новосиб. гос. аграр. ун-т, Инженер. ин-т; сост.: А.Ю. Кузнецов, П.В. Зонов, Д.С. Болотов. – Новосибирск: ИЦ НГАУ «Золотой колос», 2017. – 21 с.

Автоматизированный электропривод. Исследование генератора постоянного тока с независимым возбуждением: метод. указания к лаб. раб. / Новосиб. гос. аграр. ун–т, Инженер. ин–т; сост.: А.Ю. Кузнецов, П.В. Зонов, Д.С. Болотов. – Новосибирск: ИЦ НГАУ «Золотой колос», 2017. – 23с.

Список вопросов для подготовки к экзамену

1. Скоростные и механические характеристики двигателя постоянного тока независимого возбуждения
2. Синхронный электропривод на основе синхронной реактивной машины. Вентильный индукторный электропривод.
3. Скоростные и механические характеристики асинхронного двигателя.
4. Синхронный электропривод на основе синхронного двигателя с постоянными магнитами(СДПМ)
5. Тормозные режимы электропривода постоянного тока
6. Регулируемый асинхронный электропривод типа «Размер 2М»
7. Релейно-контакторная схема управления двигателем постоянного тока
8. Математическое описание асинхронного двигателя. Понятие изображающего вектора
9. Тормозные режимы асинхронного электропривода
10. Системы подчинённого регулирования в электроприводе постоянного тока. Ограничение тока якоря в системах подчинённого регулирования
11. Двигатель постоянного тока как объект управления: структурная схема двигателя постоянного тока независимого возбуждения
12. Датчики положения в системах автоматизированного электропривода
13. Системы автоматизированного электропривода, работающие в режиме стабилизации выходной координаты. Виды обратных связей
14. Векторное управление асинхронным электроприводом
15. Системы автоматизированного электропривода, работающие в режимах пуска и торможения. Токовая отсечка.
16. Датчики скорости в системах автоматизированного электропривода
17. Системы автоматизированного электропривода, работающие в режимах пуска и торможения. Упреждающее токоограничение
18. Схема замещения асинхронного двигателя, параметры Т-образной схемы замещения
19. Асинхронный двигатель как объект управления. Математическое описание асинхронного двигателя
20. Понятие о следящем электроприводе. Режимы «малых», «средних» и «больших» перемещений следящего электропривода
21. Системы автоматизированного электропривода, работающие в режиме стабилизации выходной координаты. Отрицательная обратная связь по скорости вращения
22. Датчики тока в системах автоматизированного электропривода
23. Структурная схема двигателя постоянного тока независимого возбуждения. Передаточная функция двигателя по управляющему и возмущающему воздействиям
24. Подчиненное регулирование параметров в системах автоматизированного электропривода. Настройка системы на «модульный» оптимум
25. Зависимость мощности и момента двигателя постоянного тока в функции скорости вращения
26. Выбор параметров регулятора положения следящего электропривода в режиме «малых» перемещений
27. Системы автоматизированного электропривода, работающие в режиме стабилизации выходной координаты. Отрицательная обратная связь по напряжению и положительная обратная связь по току якоря двигателя
28. Релейно-контакторная схема управления асинхронным двигателем с фазным ротором
29. Системы автоматизированного электропривода, работающие преимущественно в режимах пуска и торможения. Задатчик интенсивности
30. Двухконтурная система автоматизированного электропривода постоянного тока. Расчет параметров регулятора скорости
31. Подчиненное регулирование параметров в системе автоматизированного электропривода. Настройка системы на «симметричный» оптимум
32. Выбор параметров регулятора положения следящего электропривода в режиме «больших» перемещений
33. Двухконтурная система автоматизированного электропривода постоянного тока. Расчет параметров регулятора тока якоря
34. Электропривод постоянного тока с широтно-импульсными преобразователями. Функциональна схема электропривода типа ЭШИР
35. Двухзонное регулирование скорости вращения электропривода постоянного тока. Зависимое управление
36. Асинхронный двигатель как объект управления. Математическое описание асинхронного двигателя
37. Двигатель постоянного тока как объект управления. Структурная схема двигателя постоянного тока независимого возбуждения
38. Синхронный электропривод на основе синхронного двигателя с постоянными магнитами (СДПМ)

Источник